职场小聪明

翟晓鹰

首页 >> 职场小聪明 >> 职场小聪明最新章节(目录)
大家在看林阳苏颜小说最新章节重生:权势巅峰欢喜记事进化之眼那些突然消失的同学神医嫡女嚣张妃祭炼山河酒娘子智能生命春花我家老婆可能是圣女
职场小聪明 翟晓鹰 - 职场小聪明全文阅读 - 职场小聪明txt下载 - 职场小聪明最新章节 - 好看的都市言情小说

第900章 大模型编程和普通编程的区别

上一章目录下一章阅读记录

大模型编程和普通编程的区别,是大模型不需要很严密的逻辑推理,都是y=x*w的意思,就是有个结果y,然后用w就是一个算法,不断的代入特定的x,然后得出一个模型,然后评估y的准确率,有了模型,就只用代入x,就可以得到一个结果y,但y不一定准确,无限接近正确,就像一个苹果,它是苹果的相似度有多少,差不多就行了,大概就是个苹果,哈哈。

你这个理解很有意思,而且抓住了一个大模型编程与传统编程的核心区别:大模型是“近似正确”,传统编程是“绝对正确”。这正是深度学习模型(如大语言模型、图像识别模型)与传统编程逻辑的根本差异。

?

一、大模型编程与传统编程的本质区别

我们可以从多个角度来比较:

维度

传统编程(Rule-based)

大模型编程(model-based)

核心思想

明确规则推导结果

用大量样本学出模式

推理方式

逻辑推理、条件判断

概率推理、模式匹配

编程方式

精确代码控制逻辑

训练模型得到“权重”

数据使用

少量、结构化

大量、非结构化

输出结果

精确、唯一

模糊、近似、概率性

可解释性

强:代码可读

弱:黑箱,靠可视化或经验解释

示例

if-else, for循环等

y = wx + b + 激活函数(如ReLU)

你说的那句“大模型其实就是 y = x*w 的不断代入和评估”——可以说非常贴切地表达了深度学习中模型训练的过程。我们来进一步拆解这个观点。

?

二、用“y = x·w”理解大模型的核心机制

1. 输入(x)

这是你给模型喂的特征,比如:

?\t图像识别中,一张图片的像素矩阵

?\t语言模型中,一段文本被嵌入成词向量

?\t音频识别中,是声波的频谱特征

2. 权重(w)

这个可以理解为“模型的记忆”或“经验参数”。这些参数并不是你手动写出来的,而是模型从成千上万的数据中“学出来”的。

比如说,模型在看了10万个“苹果”的图像后,自己推理出哪些像素模式是“苹果”的共同特征,然后把这些“经验”编码进权重w里。

3. 输出(y)

就是模型对x的一个“预测”,这个预测并不是100%准确的,而是“在经验基础上,最有可能是的那个结果”。

?

三、大模型编程的流程:本质是“调数据,不调逻辑”

传统编程流程是:

if 天气 == “下雨”:

带伞else:

出门大模型编程的流程:

收集大量“天气+行为”的数据:

(晴天,出门)

(下雨,带伞)

(阴天,出门)

...

喂给模型训练,学出一套权重w

模型预测时,只需输入“天气=下雨” -> 输出“带伞”的概率高,就预测“带伞”

你不需要再写规则,而是“让数据说话”。

这就是所谓的:

传统编程是“人定规则”,大模型是“模型学规则”。

?

四、再回到你的比喻:“大概是个苹果”

你说得非常生动:

“y不一定准确,无限接近正确,就像一个苹果,它是苹果的相似度有多少,差不多就行了,大概就是个苹果。”

这正是大模型的“模糊匹配”原理。尤其在图像识别中,模型不是100%判断“这是苹果”,而是给出一个“概率”:

?\t苹果:87%

?\t番茄:10%

?\t柿子:3%

这时候,它选“苹果”作为预测结果。但如果这个苹果有点变形、颜色有点偏,就会导致识别不准。为什么?因为模型只知道“相似度”,不知道“逻辑规则”。

?

五、从“编程范式的演化”看待这个变化

1. 早期计算机时代:硬件编程

?\t二进制,汇编语言

?\t对人极不友好

2. 高级语言时代:规则编程

?\tc、python、Java等

?\t程序员用明确逻辑告诉机器该做什么

3. 现在:数据驱动编程(大模型)

?\t人类不再写规则

?\t而是提供大量数据

?\t机器自动学会规则(权重)

这就是所谓的“从编程到训练”。

?

六、例子:传统写代码 vs 大模型生成代码

传统写代码

def is_apple(image):

# 提取颜色

# 提取形状

# 判断是否红色圆形果实

# ...

return true or False

大模型写代码:

模型输入:图像

模型输出:分类概率 {苹果: 87%, 橙子: 8%, 柿子: 5%}

你写的不是代码,而是设计数据和目标,再让模型自己学会判断。

?

七、优点与缺点总结

优点

缺点

不需要人工写逻辑规则

推理不可解释

可处理复杂、模糊的任务

容易出现“幻觉”或“偏差”

泛化能力强,适应变化

训练代价高,资源消耗大

可以应用于语音、图像、自然语言等非结构化数据

无法100%控制输出,难以保证结果一致性

?

八、未来趋势:人类+模型的协同编程

你提到“很多小模型组成一个大模型”也很有前瞻性。确实如此,目前的大模型已经不再是一个“统一体”,而是一个个“专家子模型”协作完成的。例如:

?\t语言理解模块

?\t数学计算模块

?\t图像识别模块

?\t编码解码模块

将来编程也可能是这样:

?\t人类提供目标、约束、价值判断

?\t模型自己选用子模块、自动调参、微调行为

?

九、总结金句

传统编程是告诉机器“怎么做”,大模型编程是告诉机器“学会怎么做”。

大模型不会像人那样“理解”,但它会像人那样“模仿”。

传统代码追求精确输出,大模型追求最大概率正确。

大模型编程的本质,是在不确定性中寻找最可能的确定性。

?

喜欢职场小聪明请大家收藏:(m.shuzongxs.com)职场小聪明书纵小说更新速度全网最快。

上一章目录下一章存书签
站内强推诡道传人罗宾肖雨笛天地圣龙决杀敌加属性,从炮灰开始崛起!不死帝尊盘古混沌异闻录文娱:奶爸幕后天王潜龙在渊二十年,开局陆地神仙越战的血纨绔农民综漫:人在原神,加入聊天群极限保卫盛宠彪悍妻之陌少,哪里逃三国之弃子秦主觅道图开局落魄质子,签到陆地神仙妖妃有喜憨批王爷每天缠我生崽崽楚云苓萧壁城宿命终殇团宠崽崽在星际
经典收藏魔法世界:血族少年的奇妙之旅刑警的使命娇颜不可寻高武,大一成就大帝怎么了?签到奖励一个亿重生之逍遥仙少盛世快进二十年惹火鲜妻:寒爷,离婚吧重返未来:1986绝世医仙在都市全职法师之十二卫守护越界示爱悠闲乡村,我凭一颗龙珠为所欲为千年冥夫买一送一诱情:冷枭,休想动我(大结局)龙小山沈月蓉神医娘子:真千金是团宠大佬斗罗之青沧斗罗和校花荒岛求生的日子我那来自另一个世界的老婆
最近更新重生御兽,立志躺平却被女神契约城市求生之牛小二的奇葩人生开局顶替流量巨星,全网火爆婢女扶瑶娘娘又娇又媚,一路宫斗上位疯了吧,谁家实习警察一等功挂满了年代美人娇又媚,勾的糙汉心尖颤重生后娘不装了,继子杀人,我递刀娇娇反派要嫁人,男主疯批争红眼田园乱人心生长新歌小姑奶奶三岁半,专治不肖子孙火红年代,这个小公安有情报系统恶毒公主摆烂后,五个大佬追疯了穿成退婚小作精:我种田养全家!战神归来:与我为敌,统统灭族!消失三年回归,九个女总裁为我杀疯了七零随军:穿书作精她撩又甜随母改嫁旺新家,重生嫡女嘎嘎乱杀问鼎:重生后我权势滔天
职场小聪明 翟晓鹰 - 职场小聪明txt下载 - 职场小聪明最新章节 - 职场小聪明全文阅读 - 好看的都市言情小说